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This supplementary material provides additional technical details about the normal distribution of the objects in our

dataset, the process of calibrating lighting direction, and complete benchmark results on all objects.

A. Distribution of Surface Normal Directions
] that have diverse surface normal directions, the near-planar objects in DiLiGenT-

In contrast to the objects in DiLiGenT [
IT exhibit a strongly unbalanced distribution of surface normals, with most of the normals being concentrated around the Z
direction. We present histograms of the surface normal directions for both datasets in Fig. S1 and Fig. S2 respectively, which
clearly demonstrate the pronounced concentration of surface normals around the z direction in DiLiGenT-II.

PoT2 READING

Cow GOBLET HARVEST PoTl

© Density ~

BALL BEAR BUDDHA CAT
Figure S1: Surface normal distributions of objects in DiLiGenT [!1].
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Figure S2: Surface normal distributions of objects in DiLiGenT-II.
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B. Lighting Direction Calibration

As discussed in the main paper, we employ a robot arm to achieve diverse light directions in our capture setup. In
DiLiGenT-II, we design a uniform light distribution by placing 100 light positions at uniform latitude and longitude intervals.

Although light direction distribution is designed beforehand, the rotating device only ensures limited accuracy, which
may lead to minor deviations between the intended light directions and the actual ones in a real scene. To obtain the light
directions precisely, we follow DiLiGenT10? [10] and employ an “on the fly” calibration strategy that calculates the light
direction of each image using six surrounding mirror spheres.

Figure S3: Images of FLOWER captured in low (left) and high (right) exposure time for detecting the specular spots and
contour of the 6 mirror spheres for light calibration.
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Figure S4: The geometrical relationship between the captured object and a mirror sphere in our light calibration process,
showing the setup (left), the sphere in camera coordinate (middle), and the geometrical relationship on the sphere in 3D
coordinate (right).

As shown in Fig. S3, in the low-exposure image, the specular spots of each ball are small enough to be viewed as a point,
and the vector from the ball center to this point indicates the light direction. In the high-exposure image, the contour of mirror



spheres is more prominent, revealing their radius and center location. For the i-th of the six spheres, we denote the sphere
radius as r;, sphere center and specular spot location in the image plane as (2p;, yp;) and (s, ys;). Additionally, we define
half vector h; as the direction that lies halfway between the light source 1 and the viewer direction v. Based on the middle
part of Fig. S4, we have:
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where zp; = /72 — (z5; — 25:)% = (ysi — ypi)®. Thus we have:
hizri = Tsg — Tpi, )

hiyri = Ysi — Yvi-
By assuming distant illumination on all of the six mirror spheres, the half vector h; for each sphere should be equal. Conse-

quently, we denote an optimized half vector as h = [hy, hy, hZ]T. Its coordinates under noise can be written as:

hari = g5 — Tpi + €q4, 3)
hyri = Ysi — Yoi + €ys,

where €,; and €,; denote the Gaussian noise terms. Using the principle of maximum likelihood inference, we perform least
squares optimization to obtain the optimal values of h, and h,:
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and calculate h simply by h, = /1 — h2 — hZ. Given the optimized half vector h, we acquire light direction according to
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the law of reflection illustrated in the right side of Fig. S4:

1=2(h"v)h —v, (5)
where v = [0,0,1] " represents the view direction.

The light distribution in different scenes could have slight differences due to the mechanical moving residue of the robot
arm, therefore we provide calibrated light directions for each scene. Based on the above calibration process, we present the
light distribution of one example scene in DiLiGenT-1I in Fig. S5, where the lights are uniformly distributed on the upper
hemisphere.

(a) 2D Top View (b) 3D View

Figure S5: Light distribution of the FLOWER scene in our DiLiGenT-1I dataset.



C. Evaluation of Light Calibration

Our dataset adopts the assumption of uniform light intensity and a viewing direction of [0,0, 1]. For the light intensity,
our capture setup employs a single LED mounted on a robot arm instead of a multi-LED system, and the LED moves while
maintaining a uniform distance to the object, ensuring that the light intensities are nearly uniform in practice. Regarding the
viewing direction, the error it introduces to the light direction is negligible. To validate this point, we conduct an experiment.
We put an Aruco marker at the target object position in our setup, and calibrate the view direction using the 3D marker
positions and the camera origin. The angular difference between the calibrated view direction and the vector [0, 0, 1] is 0.32°.
Based on this calibrated view direction, we further re-calibrate the light directions in DiLiGenT-II dataset. The mean angular
error (MAE) with the original one is 0.36°, which can be disregarded.

D. Surface Measurement Process

As shown in Fig. S6 (a), to obtain the ‘GT’ normal map, we take the Alicona Infinity Focuse' to measure the surface
details of each object and output precise point cloud (accuracy up to 10 nm). In the measurement process, we choose a 5x
objective lens (Fig. S6 (b)) to acquire the measurement in a relatively large local region. By traversing all the sub-regions
step by step and registering the measurement at each region with the IF-MeasureSuit software of Alicona, we obtain the point
cloud and the corresponding mesh file of the complete target surface. Compared with the scanned mesh from DiLiGenT
which measures around 10* points per cm?, the scanned point cloud of DiLiGenT-II contains around 4M points per cm?,

which is essential to guarantee that our ‘GT’ normal maps contain tiny detailed structures of the near-planar surfaces.

E. Evaluation under Sparse Inputs

We uniformly select subsets of lights with sizes 5, 10, and 20, respectively, and evaluate PS baselines on DiLiGenT-11
dataset. The average MAEs are shown in Table S1. For 20 lights, there is no significant performance drop. As the light
number reduces to 10 or 5, the MAE increases significantly. As expected, TH46 and CNN-PS are more sensitive to the
number of lights due to the usage of thresholding strategy and the observation map.

Table S1: Benchmark results on DiLiGenT-1I with 5, 10, and 20 lights. The difference compared with 100 lights is shown in
the even rows. We denote ‘NA-PSN’ as the abbreviation of NormAttention-PSN [6].

LSPS TH28 TH46 WGI0 STI4 CNN-PS PS-FCN GPS-Net NA-PSN PF14 UPS-FCN SDPS-Net

light Plane oy iy g pa 1o @ ] [15] 61 [ ] [1]

5 14.5 15.9 13.9 37.9 83.0 16.5 65.5 17.7 14.3 20.0 454 25.0 30.7
Diff. 0 5.32 2.92 27.4 70.3 4.93 56.4 7.88 4.18 10.8 5.49 3.49 4.74
10 145 1316 129 17.5 17.1 13.8 18.3 13.6 12.2 13.2 41.7 243 29.2
Diff. 0 2.62 1.90 6.95 4.38 2.29 9.19 3.78 2.09 3.95 1.72 2.76 3.26
20 14.5 11.3 11.6 12.1 13.2 12.3 11.5 11.4 11.2 10.2 38.7 229 28.9
Diff. 0 0.72 0.62 1.55 0.5 0.78 2.32 1.52 1.04 0.97 -1.3 1.35 2.97
100 14.5 10.5 11.0 10.6 12.7 11.5 9.15 9.84 10.1 9.2 39.9 21.5 259

IWebsite: https://www.alicona.com/products/. Retrieved August 16, 2023.
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Figure S6: Surface measurement process of the proposed dataset. A precise mesh is obtained via Alicona Infinity Focuse to
generate the ’GT’ surface normal map.

F. Complete Benchmark Results on DiLiGenT-11

From Figs S7 to S36, we provide complete benchmark results including estimated normal maps and their corresponding
angular error maps. Each page focuses on a particular object and displays the performance comparison of 15 photomet-
ric stereo methods. Here, we include a range of calibrated photometric stereo methods (LSPS [13], TH28, TH46 [11],
WGI10 [14], ST14 [12], PX-Net [8], CNN-PS [4], PS-FCN [2], GPS-Net [15], and NA-PSN [6]), various uncalibrated photo-
metric stereo methods (SDPS-Net [ 1], PF14 [9], UPS-FCN [2], and UPS-GCNet [3]), as well as methods dealing with natural
lights (LW21 [7] and SDM-UniPS [5]). The plane shape defined by the [0, 0, 1] vector is also included for reference. The
mean and median of angular errors are at the top of each error map, displayed as “mean / median”, with the minimum values
highlighted in red.
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Figure S7: Estimated surface normal maps and angular error maps of FLOWER.
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Figure S8: Estimated surface normal maps and angular error maps of BIRD.
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Figure S9: Estimated surface normal maps and angular error maps of LIONS.
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Figure S10: Estimated surface normal maps and angular error maps of RHINO.
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Figure S11: Estimated surface normal maps and angular error maps of QUEEN.
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Figure S12: Estimated surface normal maps and angular error maps of CRAB.
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Figure S13: Estimated surface normal maps and angular error maps of SHIP.
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Figure S14: Estimated surface normal maps and angular error maps of PARA.
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Figure S15: Estimated surface normal maps and angular error maps of SAIL.
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Figure S16: Estimated surface normal maps and angular error maps of FISH.
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Figure S17: Estimated surface normal maps and angular error maps of TREE.
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Figure S18: Estimated surface normal maps and angular error maps of OCEAN.




LUNG
Plane

20.30/17.64

PF14

41.49/42.27

SDPS-Net

40.15/37.22

LSPS TH28 TH46 WGI0
8.23/6.55 8.76/7.14 8.13/691 11.78/8.56
PX-Net CNN-PS PS-FCN GPS-Net
7.60/5.78 5.75/4.54 9.7317.29 7.54/5.71
UPS-FCN UPS-GCNet Lw2l SDM-UniPS

36.52/33.48 33.96/30.48 3440/2990  46.55/44.92

Figure S19: Estimated surface normal maps and angular error maps of LUNG.

ST14

9.41/7.49

NA-PSN

7.80/6.26



BEAR
Plane

9.7717.99

PF14

84.82/86.38

SDPS-Net

30.69/26.46

LSPS

9.11/7.42

PX-Net

7.93/6.64

UPS-FCN

27.61/24.73

TH28

8.52/743

CNN-PS

7.39/5.89

UPS-GCNet

26.44/22.64

TH46

8.88/7.87

PS-FCN

7.39/6.55

Lw2l

27.03/24.75

WGI0

8.58/6.64

GPS-Net

6.89/5.97

SDM-UniPS

23.791/17.25

ST14

9.7117.83

NA-PSN

7.3716.45

Ho

Figure S20: Estimated surface normal maps and angular error maps of BEAR.
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Figure S21: Estimated surface normal maps and angular error maps of TV.
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Figure S22: Estimated surface normal maps and angular error maps of SUN.

ST14

8.21/6.24

NA-PSN

5.62/4.77




TAICHI
Plane LSPS TH28 TH46 WGI0 STI4

17.28/ 14.64 9.15/7.44 [1.15/7.96 11.03/7.41 17.88/11.14 10.73/7.83
PF14 PX-Net CNN-PS PS-FCN GPS-Net NA-PSN
58.88/59.21 8.70/6.29 8.27/5.53 8.03/6.56 8.27/6.23 7.5816.16

SDPS-Net UPS-FCN UPS-GCNet Lw2l SDM-UniPS

26.92/23.42 29.82/25.85 23.19/21.96  2891/25.56 36.60/29.94

Ho

Figure S23: Estimated surface normal maps and angular error maps of TAICHI.
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Figure S24: Estimated surface normal maps and angular error maps of WAVE.
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Figure S25: Estimated surface normal maps and angular error maps of ASTRO.
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Figure S26: Estimated surface normal maps and angular error maps of WHALE.
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Figure S27: Estimated surface normal maps and angular error maps of BAGUA-T.
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Figure S28: Estimated surface normal maps and angular error maps of LOTUS-T.
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Figure S29: Estimated surface normal maps and angular error maps of LION-T.
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Figure S30: Estimated surface normal maps and angular error maps of PANDA-T.
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Figure S31: Estimated surface normal maps and angular error maps of CLOUD-T.
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Figure S32: Estimated surface normal maps and angular error maps of BAGUA-R.
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Figure S33: Estimated surface normal maps and angular error maps of LOTUS-R.
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Figure S34: Estimated surface normal maps and angular error maps of LION-R.
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Figure S35: Estimated surface normal maps and angular error maps of PANDA-R.
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Figure S36: Estimated surface normal maps and angular error maps of CLOUD-R.
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